• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A comparative analysis to forecast carbon dioxide emissions

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S2352484722011659-main.pdf (872.4Kb)
    التاريخ
    2022
    المؤلف
    Faruque, Md. Omer
    Rabby, Md. Afser Jani
    Hossain, Md. Alamgir
    Islam, Md. Rashidul
    Rashid, Md Mamun Ur
    Muyeen, S.M.
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Despite the growing knowledge and commitment to climate change, carbon dioxide (CO2) emissions continue to rise dramatically throughout the planet. In recent years, the consequences of climate change have become more catastrophic and have attracted widespread attention globally. CO2 emissions from the energy industry have lately been highlighted as one of the world's most pressing concerns for all countries. This paper examines the relationships between CO2 emissions, electrical energy consumption, and gross domestic product (GDP) in Bangladesh from 1972 to 2019 in the first section. In this purpose, we applied the fully modified ordinary least squares (FMOLS) approach. The findings indicate that CO2 emissions, electrical energy consumption, and GDP have a statistically significant long-term cointegrating relationship. Developing an accurate CO2 emissions forecasting model is crucial for tackling it safely. This leads to the second step, which involves formulating the multivariate time series CO2 emissions forecasting challenges considering its influential factors. Based on multivariate time series prediction, four deep learning algorithms are analyzed in this work, those are convolution neural network (CNN), CNN long short-term memory (CNN-LSTM), long short-term memory (LSTM), and dense neural network (DNN). The root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) are used to analyze and compare the performances of the predictive models. The prediction errors in MAPE of the CNN, CNN-LSTM, LSTM, and DNN are 15.043, 5.065, 5.377, and 3.678, respectively. After evaluating those deep learning models, a multivariate polynomial regression has also been employed to forecast CO2 emissions. It seems to have nearly similar accuracy as the LSTM model, having a MAPE of 5.541. 2022 The Authors
    DOI/handle
    http://dx.doi.org/10.1016/j.egyr.2022.06.025
    http://hdl.handle.net/10576/40383
    المجموعات
    • الهندسة الكهربائية [‎2840‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video