• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Impact of nanosizing on the formation and characteristics of polymethacrylate films: micro- versus nano-suspensions

    Thumbnail
    View/Open
    Impact of nanosizing on the formation and characteristics of polymethacrylate films micro versus nano suspensions.pdf (2.623Mb)
    Date
    2021
    Author
    Yousaf, Sakib Saleem
    Isreb, Abdullah
    Khan, Iftikhar
    Mewsiga, Enosh
    Elhissi, Abdelbary
    Ahmed, Waqar
    Alhnan, Mohamed A.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Aqueous-based film coating suspensions are associated with reliance on alkalinising reagents and poor film formation. The impact of particle size in this process and resultant film properties remains unclear. This study offers the first direct comparison of film formation properties between aqueous micro- and nano-suspensions of the enteric polymer Eudragit S100. High-pressure homogenisation was employed to produce nano-suspensions of the enteric polymer. Formed enteric suspensions (micro- and nano-) were evaluated in terms of size, morphology, and ability to form film; with resultant films analysed in terms of; film thickness, mechanical and thermoplastic properties, water uptake, weight loss, and drug permeability in acidic medium. High-pressure homogenisation yielded particles within a submicron range (150–200 nm). Produced nano-suspensions formed significantly thinner films (p < 0.01), at lower plasticiser concentrations, than films cast from micro-suspensions (differences in thickness up to 100 µm); however, exhibited comparative gastro-resistant properties (p > 0.05) in terms of water uptake (∼25% w/w), weight loss (<16% w/w) and drug permeability (<0.1%). Interestingly, nano-suspension-based films exhibited lower glass transition temperatures (Tg) (p < 0.01), when compared to films cast from micro-suspensions (∼7–20 °C difference), indicating enhanced plasticisation. This was reflected in film mechanical properties; where nano-suspension-based films demonstrated significantly lower tensile strength (p < 0.01) and higher percentage elongation (p < 0.05), suggesting high elasticity. Thinner, highly elastic films were formed from nano-suspensions, compared to films cast from micro-suspensions, exhibiting comparative properties; obviating the need for alkalinising agents and high concentrations of plasticiser.
    DOI/handle
    http://dx.doi.org/10.1080/10837450.2021.1931886
    http://hdl.handle.net/10576/40534
    Collections
    • Pharmacy Research [‎1389‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video