Developing pretreatment methods to promote the production of biopolymer and bioethanol from residual algal biomass (RAB)
View/ Open
Publisher version (Check access options)
Check access options
Date
2022-11-07Author
Fares, AlMomaniShawaqfah, Moayyad
Alsarayreh, Malak
Khraisheh, Majeda
Hameed, Bassim H.
Naqvi, Salman Raza
Berkani, Mohammed
Varjani, Sunita
...show more authors ...show less authors
Metadata
Show full item recordAbstract
This study investigates the effect of acidic pretreatment (HT-ACPT), enzymatic pretreatment (ENZ-PT), and microwave laser-hydrogen peroxide-Fe-nanoparticle pretreatment (Mv-H2O2-Fe-PT) on the production of bioethanol (bio-eth.) and biopolymer (bio-p) from residual algal biomass (RAB). The effectiveness of these pretreatments is based on using the entire RAB and maximizing sugar liberation to produces bio-p and bio-eth under optimized conditions. The Mv-H2O2-Fe-PT yielded the maximum total and soluble sugar liberation of 0.988 ± 0.08 and 0.6888 ± 0.08 g/gDCW compared with HT-ACPT (0.588 ± 0.02 and 0.488 ± 0.02 g/gDCW) and ENZ-PT (0.528 ± 0.06 and 0.428 ± 0.06 g/gDCW). All pretreatment methods split the β-1, 4-glycosidic bonds into cellulose and liberate sugars that were later used to produce bio-p and bio-eth. The algal strains treated by Mv-H2O2-Fe-PT produced the highest bio-p of 0.740 ± 0.004 gpolyemer/gDCW, which is 1.3 folds higher than the productivity of HT-ACPT and ENZ-PT. The HT-ACPT and ENZ-PT produced 67 to 72 % and 59 to 63 % lower biopolymer yield. The maximum bioethanol production (Mbio−ethP) of 0.950 ± 0.005 mL/gRAB was achieved using microalgae pretreated with Mv-H2O2-Fe-PT and incubated at pH = 5.5 and 37 °C. The Mbio−ethP was negatively affect by increasing the pH or decreasing the temperature. The Mbio−ethP decreased to 0.853 ± 0.002 mL/gRAB by increasing the pH to 6 and to 0.761 ± 0.002 mL/g when the temperature decreased to 33 °C. The Mbio−ethP as a fraction of theoretical yield (%ThY) were in the ranges of 21 to 33 %, 33.3 to 51.1 % and 59.52 to 91.2 % for RAB pretreated with HT-ACPT, ENZ-PT and Mv-H2O2-Fe-PT, respectively. The produced bio-p exhibited excellent properties and can be used in a variety of applications including soil additives, biofuel production, regenerative medicine, and other medical applications. The Mv-H2O2-Fe-PT pretreatment offers complete use of RAB to produce different bio-products.
Collections
- Chemical Engineering [1175 items ]