• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز قطر للنقل والسلامة المرورية
  • السلامة المرورية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز قطر للنقل والسلامة المرورية
  • السلامة المرورية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Application of Unsupervised Machine Learning Classification for the Analysis of Driver Behavior in Work Zones in the State of Qatar

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    sustainability-14-15184-with-cover.pdf (979.2Kb)
    التاريخ
    2022-11-16
    المؤلف
    Khanfar, Nour O.
    Ashqar, Huthaifa I.
    Elhenawy, Mohammed
    Hussain, Qinaat
    Hasasneh, Ahmad
    Alhajyaseen, Wael K.M.
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Work zone areas are commonly known as crash-prone areas. Thus, they usually receive high priority by road operators as drivers and workers have higher chances of being involved in road crashes. The paper aims to investigate driving behavior in work zones using unsupervised machine learning and vehicle kinematic data. A dataset of 67 participants was gathered through an experiment using a driving simulator located at the Qatar Transportation and Traffic Safety Center (QTTSC). The study considered two different work zone scenarios where the leftmost lane was closed for maintenance. In the first scenario, drivers drove on the leftmost lane (Drive 1), while in the second, they drove on the second leftmost lane (Drive 2). The results show that the number of aggressive and conservative drivers was surprisingly more than normal drivers, as most participants either cautiously drove through or failed to drive without being aggressive. The results also show that drivers acted more aggressively in the leftmost lane rather than in the second leftmost lane. We also found that female drivers and drivers with relatively little driving experience were more likely to be aggressive as they drove through a work zone. The framework was found to be promising and can help policymakers take optimal safety countermeasures in work zones during construction.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85142753988&origin=inward
    DOI/handle
    http://dx.doi.org/10.3390/su142215184
    http://hdl.handle.net/10576/41698
    المجموعات
    • السلامة المرورية [‎163‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video