• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluation of the inhibition performance of piperazine-based polyurea towards mild steel corrosion: The role of keto-enol tautomerization

    No Thumbnail [120x130]
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2022-01-15
    Author
    Abdulazeez, Ismail
    Peng, Qing
    Al-Hamouz, Othman Charles S.
    Khaled, Mazen
    Al-Saadi, Abdulaziz A.
    Metadata
    Show full item record
    Abstract
    The lack of solubility of polyurea materials impedes their application as effective inhibitors against metallic corrosion in aqueous media. Herein, we have synthesized a new piperazine-based polyurea inhibitor (PUCorr) which is readily soluble in water through dispersion in N-methyl-2-pyrrolidone for mild steel corrosion. The inhibitor exhibits a sufficient protection of the surface of mild steel via an intra-molecular keto-enol proton transfer mechanism leading to the formation of the Fe-PUCorr complex. First-principles calculations proposed that the keto-enol tautomerism enhances the adsorption with an increase of adsorption energies of 510, 221, 171 and 211 kJ/mol on {100}, {110}, {111} and {112} surfaces of iron, respectively. The presence of PUCorr at 100 ppm decreases the corrosion current density from 30.3 to 3.05 μA/cm2 in 0.5 M NaCl at room temperature, exhibiting a remarkable inhibition efficiency of 94.5%. Electrochemical measurements revealed that PUCorr functions as a mixed-type inhibitor, suppressing both anodic and cathodic processes. The use of synthetic polyurea materials with a low dosage shall provide a promising approach to reduce mild steel corrosion in harsh environments.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85115022744&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.molstruc.2021.131485
    http://hdl.handle.net/10576/42827
    Collections
    • Chemistry & Earth Sciences [‎606‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video

    NoThumbnail