• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكيميائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكيميائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A classifier to detect best mode for Solar Chimney Power Plant system

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    التاريخ
    2022
    المؤلف
    Abdelsalam, Emad
    Darwish, Omar
    Karajeh, Ola
    Almomani, Fares
    Darweesh, Dirar
    Kiswani, Sanad
    Omar, Abdullah
    Alkisrawi, Malek
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Machine learning (ML) classifiers were used as a novel approach to select the best operating mode for Hybrid Solar Chimney Power Plant (HSCPP). The classifiers (decision tree (J48), Nave Bayes (NB), and Support Vector Machines (SVM)) were developed to identify the best operating modes of the HSCPP based on meteorological data sets. The HSCPP uses solar irradiation (SolarRad) to function as a power plant (PP) during the day and as a cooling tower (CT) at night. The SVM is the best classifier to predict the operating mode of HSCPP with an accuracy of ∼2% compared to NB and J48. Under the studied conditions the Regression analysis using REPTree was found to outperform SMOreg and achieved a relative absolute error ∼20 kWh. The productivity of the HSCPP is highly affected by maximum air temperature (Tair,Max), the average temperature of air (T air,Avg), solar irradiation standard deviation (SolarRadSTD), and maximum wind speed (Wsp,Max). Under optimal conditions, the HSCPP generates an additional 2.5% of energy equivalent to revenue of $3910.5 per year. Results show that ML can be used to optimize the operation of HSCPP for maximum electrical power and distilled water production.
    DOI/handle
    http://dx.doi.org/10.1016/j.renene.2022.07.056
    http://hdl.handle.net/10576/44779
    المجموعات
    • الهندسة الكيميائية [‎1194‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video