• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Conference Proceedings
  • International Conference on Civil Infrastructure and Construction (CIC 2023)
  • Theme 2: Advances in Infrastructure Sustainability, Renovation, and Monitoring
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Conference Proceedings
  • International Conference on Civil Infrastructure and Construction (CIC 2023)
  • Theme 2: Advances in Infrastructure Sustainability, Renovation, and Monitoring
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Static and Free Vibration Analysis of Porous Functionally Graded Beams

    Thumbnail
    View/Open
    059.pdf (854.2Kb)
    Date
    2023
    Author
    Hadji, Lazreg
    Plevris, Vagelis
    Madan, Royal
    Metadata
    Show full item record
    Abstract
    In this work, the static and free vibration analysis of functionally graded (FG) porous beams is investigated using a new higher-order shear deformation model (HSD). The porosity that develops naturally during the fabrication of a material is arbitrary in nature. Therefore, in the present study, a variation is considered taking into account three distribution patterns, namely (i) even distribution, (ii) uneven distribution, and (iii) the logarithmic-uneven pattern. Furthermore, the impact of several micromechanical models on the bending and free vibration behavior of the beams was investigated. Different micromechanical models were used to examine the mechanical properties of functionally graded beams, the properties of which change continuously throughout the thickness following a power law. Using the HSD model, the equations of motion are obtained using Hamilton's principle. To obtain displacements, stresses, and frequencies, the Navier type solution method was employed, and the numerical results were compared to those published in the literature. The impact of porosity and volume fraction index, different micromechanical models, mode numbers, and geometry on the bending and natural frequencies of imperfect FG beams were investigated.
    URI
    https://doi.org/10.29117/cic.2023.0059
    DOI/handle
    http://hdl.handle.net/10576/46762
    Collections
    • Civil and Environmental Engineering [‎862‎ items ]
    • Theme 2: Advances in Infrastructure Sustainability, Renovation, and Monitoring [‎68‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video