• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • إصدارات جامعة قطر
  • وقائع مؤتمرات
  • International Conference on Civil Infrastructure and Construction (CIC 2023)
  • Theme 2: Advances in Infrastructure Sustainability, Renovation, and Monitoring
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • إصدارات جامعة قطر
  • وقائع مؤتمرات
  • International Conference on Civil Infrastructure and Construction (CIC 2023)
  • Theme 2: Advances in Infrastructure Sustainability, Renovation, and Monitoring
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling Thermal Conductivity, Thermal Diffusivity and Specific Heat of Asphalt Concrete Using Beta Regression and Mixture Volumetrics

    Thumbnail
    عرض / فتح
    076.pdf (455.9Kb)
    التاريخ
    2023
    المؤلف
    Khasawneh, Mohammad Ali
    Alsheyab, Mohammad Ahmad
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The main objective of this paper is to develop predictive models using Beta regression for laboratory-prepared hot mix asphalt (HMA) specimens' thermal properties, including thermal conductivity (TC), thermal diffusivity (TD) and specific heat (SH). Thirty such specimens were prepared while varying the mixture's nominal maximum aggregate sizes (NMAS) and gradation coarseness. The widely used Transient Plane Source (TPS) method was employed to determine the thermal properties of the asphalt concrete. Only one type of asphalt binder was used for preparing all specimens. The air void volume (Va) and the effective binder volume (Vbe) were calculated for each mixture. To this end, the multiple linear regressions and the non-linear beta regressions were employed. Laboratory work resulted in hundred and fifty (150) data points. Three nominal maximum aggregate sizes, two gradation coarseness levels, five replicates and five different locations of measurements to ensure accuracy and repeatability in the obtained results. In conclusion, using Va and Vbe as predictors provided reliable predictive models for the thermal properties of different asphalt mixtures. The distribution of Va and Vbe was identified, and synthetic data was created to evaluate the accuracy of the models. Apart from R2 values, beta regression was more reliable to predict thermal properties of asphalt mixtures than multiple linear regression.
    معرّف المصادر الموحد
    https://doi.org/10.29117/cic.2023.0076
    DOI/handle
    http://hdl.handle.net/10576/46779
    المجموعات
    • Theme 2: Advances in Infrastructure Sustainability, Renovation, and Monitoring [‎68‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video