• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الآداب والعلوم
  • الرياضيات والإحصاء والفيزياء
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الآداب والعلوم
  • الرياضيات والإحصاء والفيزياء
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Adaptive two-stage inverse sampling design to estimate density, abundance, and occupancy of rare and clustered populations

    Thumbnail
    عرض / فتح
    journal.pone.0255256 (1).pdf (1.899Mb)
    التاريخ
    2021
    المؤلف
    Salehi, Mohammad
    Smith, David R.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Sampling rare and clustered populations is challenging because of the effort required to find rare units. Heuristically, a practitioner would prefer to discontinue sampling in areas where rare units of interest are apparently extremely sparse or absent. We take advantage of the characteristics of inverse sampling to adaptively inform practitioners when it is efficient to move on to sample new areas. We introduce Adaptive Two-stage Inverse Sampling (ATIS), which is designed to leave a selected area after observation of an a priori number of only non-rare units and to continue sampling in the area when rare units are observed. ATIS is efficient in many cases and yields more rare units than conventional sampling for a rare and clustered population. We derive unbiased estimators of population total and variance. We also introduce an easy-to-compute estimator, which is nearly as efficient as the unbiased estimator. A simulation study on a rare plant population of buttercups (Ranunculus) shows that ATIS even with the easy-to-compute estimator is more efficient than its conventional sampling counterparts and is more efficient than Two-stage Adaptive Cluster Sampling (TACS) for small and moderate final sample sizes. Additional simulations reveal that ATIS is efficient for binary data (e.g., presence or absence) whereas TACS is inefficient for binary data. The overall results indicate that ATIS is consistently efficient compared to conventional sampling and to adaptive cluster sampling in some important cases.
    DOI/handle
    http://dx.doi.org/10.1371/journal.pone.0255256
    http://hdl.handle.net/10576/48150
    المجموعات
    • الرياضيات والإحصاء والفيزياء [‎804‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video