• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bond durability of basalt FRP bars to fiber reinforced concrete in a saline environment

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020-07-01
    Author
    Alaa, Taha
    Alnahhal, Wael
    Alnuaimi, Nasser
    Metadata
    Show full item record
    Abstract
    This study investigates the influence of basalt fiber reinforced concrete (BFRC) on the bond durability of helically wrapped basalt fiber reinforced polymers (HWBFRP) bars subjected to harsh saline environmental conditions. A total of 63 pullout specimens were fabricated and tested. Test parameters included conditioning duration (30, 60 and 90 days), conditioning temperature (35 and 60 °C), and the volume fraction of basalt macrofibers (BMF) added in the concrete mixture (0, 0.5 and 1%). Moreover, scanned electron microscopy (SEM) analysis was conducted to investigate the degradation of the HWBFRP bars. Additionally, two existing analytical models, the BPE and CMR models were calibrated using the experimental results for a better prediction of the bond-slip behavior of HWBFRP bars. The service life prediction of the bond strength after 50 years of service was also performed. Experimental results revealed that the addition of BMF to concrete improved the bond performance of HWBFRP bars and showed higher retentions in the bond strength compared to plain concrete specimens after 90 days of environmental conditioning, particularly at high temperatures. Moreover, the CMR model showed better reliability than the BPE model in describing the bond-slip behavior of HWBFRP bars in both plain and fiber reinforced concrete.
    URI
    https://www.sciencedirect.com/science/article/pii/S0263822319347695
    DOI/handle
    http://dx.doi.org/10.1016/j.compstruct.2020.112277
    http://hdl.handle.net/10576/49493
    Collections
    • Civil and Environmental Engineering [‎862‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video