• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة المدنية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة المدنية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    AI and IoT-based concrete column base cover localization and degradation detection algorithm using deep learning techniques

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S2090447923004094-main.pdf (7.398Mb)
    التاريخ
    2023-10-18
    المؤلف
    Khalid, Naji
    Gowid, Samer
    Ghani, Saud
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Internet of Things (IoT) and Artificial Intelligence (AI) technologies are currently replacing the traditional methods of handling buildings, infrastructure, and facilities design, control, and maintenance due to their precision and ease of use. This paper proposes a novel automated algorithm for the health monitoring of concrete column base cover degradation based on IoT and the state-of-the-art deep learning framework, Convolutional Neural Network (CNN). This technique is developed for instance detection and localization of the major types of column defects. Three deep machine learning training models; namely, Resnet-50, Googlenet, and Visual Geometry Group (VGG19), with 7 different network configurations and inputs were studied and compared for their classification performance and certainty. Despite that, a few articles consider the certainty of the CNN classification results, this work investigates the certainty and employs the classification error score as a new performance measure. The results of this study demonstrated the effectiveness of the proposed defect detection and localization algorithm as it managed to read all barcodes, localize defective columns, and binary classify the condition of the concrete covers against their surrounding objects. They also showed that the VGG19 network outperformed the other addressed network models and configurations. The VGG19 network yielded a health condition classification accuracy of 100% with an RMSE of 0.33% and a maximum classification error score of 0.87 %.
    معرّف المصادر الموحد
    https://www.sciencedirect.com/science/article/pii/S2090447923004094
    DOI/handle
    http://dx.doi.org/10.1016/j.asej.2023.102520
    http://hdl.handle.net/10576/50032
    المجموعات
    • الهندسة المدنية [‎862‎ items ]
    • الهندسة الميكانيكية والصناعية [‎1465‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video