• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of a stacked machine learning model to compute the capability of ZnO-based sensors for hydrogen detection

    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S2214993724000435-main.pdf (866.6Kb)
    التاريخ
    2024-02-09
    المؤلف
    Behzad, Vaferi
    Dehbashi, Mohsen
    Khandakar, Amith
    Ayari, Mohamed Arselene
    Amini, Samira
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Zinc oxide (ZnO) nanocomposite sensors decorated with various dopants are popular tools for detecting even low hydrogen (H2) concentrations. The nanocomposite's chemistry, temperature, and H2 concentration impact the success of hydrogen sensors. Extensive laboratory-scale studies were conducted to investigate the effect of these variables on sensor performance, there is currently no model to relate the nanocomposite's sensitivity to its influential variables. This study proposes a stacked model by integrating Extra tree and XGBoost (eXtreme Gradient Boosting) regressor to precisely relate the sensitivity of the ZnO-based sensor to the nanocomposite's chemistry, H2 concentration, and temperature. The model's accuracy is superior to that of conventional artificial neural networks, achieving outstanding prediction results with mean absolute error (MAE) = 0.11, mean squared error (MSE) = 0.31, mean absolute percentage error (MAPE) = 1.14%, and R-squared (R2) = 0.9994 based on 208 actual sensor sensitivities. Also, the designed stacked model predicts 206 experimental records with relative error ranges from −4% to 8%. Applicability domain analysis confirms the validity of almost all experimental measurements (200 out of 208 records). Trend and relevancy analyses indicated that the sensor sensitivity intensifies with increasing hydrogen concentration and decreasing temperature. The reduced graphene oxide (rGO) dose initially improves sensor sensitivity toward hydrogen detection up to a maximum value and then continuously decreases it. The analysis of variance approves that the ZnO-Co3O4 sensor has the maximum value of least squares average = 42.3 for hydrogen detection over its experimental conditions. This study provides valuable insights for designing efficient ZnO-based sensors for hydrogen detection, ultimately contributing to safe hydrogen transportation/utilization.
    معرّف المصادر الموحد
    https://www.sciencedirect.com/science/article/pii/S2214993724000435
    DOI/handle
    http://dx.doi.org/10.1016/j.susmat.2024.e00863
    http://hdl.handle.net/10576/54035
    المجموعات
    • الهندسة المدنية [‎867‎ items ]
    • الهندسة الكهربائية [‎2840‎ items ]
    • وحدة الابتكار التكنولوجي والتعليم الهندسي [‎63‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video