• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Explainable deep learning model for automatic mulberry leaf disease classification

    Thumbnail
    عرض / فتح
    fpls-14-1175515.pdf (10.19Mb)
    التاريخ
    2023-09-19
    المؤلف
    Nahiduzzaman, Md
    Chowdhury, Muhammad E.H.
    Salam, Abdus
    Nahid, Emama
    Ahmed, Faruque
    Al-Emadi, Nasser
    Ayari, Mohamed Arselene
    Khandakar, Amith
    Haider, Julfikar
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Mulberry leaves feed Bombyx mori silkworms to generate silk thread. Diseases that affect mulberry leaves have reduced crop and silk yields in sericulture, which produces 90% of the world’s raw silk. Manual leaf disease identification is tedious and error-prone. Computer vision can categorize leaf diseases early and overcome the challenges of manual identification. No mulberry leaf deep learning (DL) models have been reported. Therefore, in this study, two types of leaf diseases: leaf rust and leaf spot, with disease-free leaves, were collected from two regions of Bangladesh. Sericulture experts annotated the leaf images. The images were pre-processed, and 6,000 synthetic images were generated using typical image augmentation methods from the original 764 training images. Additional 218 and 109 images were employed for testing and validation respectively. In addition, a unique lightweight parallel depth-wise separable CNN model, PDS-CNN was developed by applying depth-wise separable convolutional layers to reduce parameters, layers, and size while boosting classification performance. Finally, the explainable capability of PDS-CNN is obtained through the use of SHapley Additive exPlanations (SHAP) evaluated by a sericulture specialist. The proposed PDS-CNN outperforms well-known deep transfer learning models, achieving an optimistic accuracy of 95.05 ± 2.86% for three-class classifications and 96.06 ± 3.01% for binary classifications with only 0.53 million parameters, 8 layers, and a size of 6.3 megabytes. Furthermore, when compared with other well-known transfer models, the proposed model identified mulberry leaf diseases with higher accuracy, fewer factors, fewer layers, and lower overall size. The visually expressive SHAP explanation images validate the models’ findings aligning with the predictions made the sericulture specialist. Based on these findings, it is possible to conclude that the explainable AI (XAI)-based PDS-CNN can provide sericulture specialists with an effective tool for accurately categorizing mulberry leaves.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85173948402&origin=inward
    DOI/handle
    http://dx.doi.org/10.3389/fpls.2023.1175515
    http://hdl.handle.net/10576/54047
    المجموعات
    • الهندسة المدنية [‎867‎ items ]
    • الهندسة الكهربائية [‎2840‎ items ]
    • وحدة الابتكار التكنولوجي والتعليم الهندسي [‎63‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video