• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • حقوق النشر
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An automated robust segmentation method for intravascular ultrasound images

    Thumbnail
    التاريخ
    2014
    المؤلف
    Manandhar, Prakash
    Chen, Chi Hau
    Coskun, Ahmet Umit
    Qidwai, Uvais A.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    It is widely known that the state of a patient's coronary heart disease can be better assessed using intravascular ultrasound (IVUS) than with more conventional angiography. Recent work has shown that segmentation and 3D reconstruction of IVUS pullback sequence images can be used for computational fluid dynamic simulation of blood flow through the coronary arteries. This map of shear stress in the blood vessel walls can be used to predict susceptibility of a region of the arteries to future arteriosclerosis and disease. Manual segmentation of images is time consuming as well as cost prohibitive for routine diagnostic use. Current segmentation algorithms do not achieve a high enough accuracy because of the presence of speckle due to blood flow, relatively low resolution of images and presence of various artifacts including guide-wires, stents, vessel branches, and some other growth or inflammations. On the other hand, the image may be induced with additional blur due to movement distortions, as well as resolution-related mixing of closely resembling pixels thus forming a type of out-offocus blur. Robust automated segmentation achieving high accuracy of 95% or above has been elusive despite work by a large community of researchers in the machine vision field. In this chapter, we present a comprehensive method, based on computer vision and pattern recognition, where a multitude of algorithms are applied simultaneously to the segmentation problem. The method presented is to combine algorithms using a meta-algorithmic approach. Each segmentation algorithm computes along with the segmentation a measure of confidence in the segmentation which can be biased on prior information about the presence of artifacts. A meta-algorithm then runs a library of algorithms on a sub-sequence of images to be segmented and chooses the segmentation based on computed confidence measures. Machine learning and testing is performed on a large database, that includes 2293 gated image frames that have been manually segmented for training and performance comparison, and a total of 57,098 image frames for testing the meta-algorithm to obtain reliable segmentation performance assessment.
    DOI/handle
    http://dx.doi.org/10.1142/9789814611107_0019
    http://hdl.handle.net/10576/54680
    المجموعات
    • علوم وهندسة الحاسب [‎2484‎ items ]

    entitlement

    وثائق ذات صلة

    عرض الوثائق المتصلة بواسطة: العنوان، المؤلف، المنشئ والموضوع.

    • Thumbnail

      3D Quantum Cuts for automatic segmentation of porous media in tomography images 

      Malik J.; Kiranyaz, Mustafa Serkan; Al-Raoush R.I.; Monga O.; Garnier P.; Foufou S.; Bouras A.; Iosifidis A.; Gabbouj M.; Baveye P.C.... more authors ... less authors ( Elsevier Ltd , 2022 , Article)
      Binary segmentation of volumetric images of porous media is a crucial step towards gaining a deeper understanding of the factors governing biogeochemical processes at minute scales. Contemporary work primarily revolves ...
    • Thumbnail

      COVID-19 infection localization and severity grading from chest X-ray images 

      Tahir A.M.; Chowdhury M.E.H.; Khandakar A.; Rahman T.; Qiblawey Y.; Khurshid U.; Kiranyaz, Mustafa Serkan; Ibtehaz N.; Rahman M.S.; Al-Maadeed S.; Mahmud S.; Ezeddin M.; Hameed K.; Hamid T.... more authors ... less authors ( Elsevier Ltd , 2021 , Article)
      The immense spread of coronavirus disease 2019 (COVID-19) has left healthcare systems incapable to diagnose and test patients at the required rate. Given the effects of COVID-19 on pulmonary tissues, chest radiographic ...
    • Thumbnail

      Encoder-decoder architecture for ultrasound IMC segmentation and cIMT measurement 

      Al-Mohannadi A.; Al-Maadeed, Somaya; Elharrouss O.; Sadasivuni K.K. ( MDPI , 2021 , Article)
      Cardiovascular diseases (CVDs) have shown a huge impact on the number of deaths in the world. Thus, common carotid artery (CCA) segmentation and intima-media thickness (IMT) measurements have been significantly implemented ...

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video