• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Copyrights
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Electrostatic-hydraulic coupled soft actuator for micropump application

    Thumbnail
    Date
    2024
    Author
    Ahmad Fuaad, Mariatul Rawdhah
    Hasan, Mohammed Nazibul
    Muthalif, Asan G A
    Mohamed Ali, Mohamed Sultan
    Metadata
    Show full item record
    Abstract
    The development of a soft actuator with high displacement is crucial for the effective operation of micropumps, ensuring a high fluid pump rate. This study introduces an innovative approach by presenting the design and fabrication of a novel electrostatic-hydraulic coupled soft actuator for a micropump within a microfluidic system. This pioneering soft actuator, leveraging electrostatic-hydraulic coupling, showcases a unique solution to enhance the performance of micropumps. The versatility of such a soft actuator makes it particularly promising for biomedical applications. The actuator comprises dielectric fluid in an elastomeric shell and electrodes to form the out-of-plane fluid-amplified displacement. This displacement amplification was used to generate a pumping actuation in the micropump. The actuator was characterized in terms of dielectric fluid volume, electrode size, temporal response, and amplification displacement. The soft actuator showed a maximum amplified displacement of 0.51 mm at 10 kV of the applied voltage, but a higher voltage caused a dielectric breakdown. Moreover, the actuator demonstrated the ability to operate at frequencies of 0.25 Hz and 0.1 Hz. The results of the study indicate that the fabricated electrostatic-hydraulic coupled soft actuator is a dependable and effective method of actuation for a micropump in a microfluidic system. The experimental characterization of the micropump revealed a maximum flow rate of 2304 μl min−1.
    DOI/handle
    http://dx.doi.org/10.1088/1361-665X/ad1428
    http://hdl.handle.net/10576/54914
    Collections
    • Electrical Engineering [‎2848‎ items ]
    • Mechanical & Industrial Engineering [‎1508‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video