• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • حقوق النشر
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الميكانيكية والصناعية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الميكانيكية والصناعية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Gas turbine failure classification using acoustic emissions with wavelet analysis and deep learning

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S0957417423011867-main.pdf (9.643Mb)
    التاريخ
    2023
    المؤلف
    Nashed, M.S.
    Renno, J.
    Mohamed, M.S.
    Reuben, R.L.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Compared to vibration monitoring, acoustic emission (AE) monitoring in gas turbines is highly sensitive to changes that do not involve whole-body motion, such as wear, rubbing, and fluid-induced faults. AE signals captured by suitably mounted sensors can potentially provide early indications of abnormal turbine operation before such abnormalities manifest in structural vibration or emitted airborne noise. However, developing an online fault detection system requires extensive real-time data treatment to extract appropriate features and indicators from raw AE records. To build such a system for industrial turbines, researchers need to understand the AE-generating mechanisms associated with turbine operation and the sources of background noise. In this study, we aim to develop such an understanding using a small-scale turbine whose operational conditions can be modified safely to reflect both normal and faulty conditions. Our signal processing approach involves first extracting a time-series envelope using an averaging time selected to enhance major features and eliminate irrelevant noise. We then generate time-frequency features using a continuous wavelet transform, which are used to train a deep convolutional neural network to classify gas turbine conditions. The resulting model demonstrates high accuracy in classifying two normal running conditions and two faulty conditions at various turbine speeds. Overall, the proposed methodology offers a powerful tool for gas turbine condition monitoring, and we make all associated data available in open-source format to facilitate further research in this field.4
    DOI/handle
    http://dx.doi.org/10.1016/j.eswa.2023.120684
    http://hdl.handle.net/10576/55696
    المجموعات
    • الهندسة الميكانيكية والصناعية [‎1508‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video