• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Phase-I monitoring of high-dimensional covariance matrix using an adaptive thresholding LASSO rule

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020
    Author
    Abdella, Galal M.
    Maleki, Mohammad Reza
    Kim, Sangahn
    Al-Khalifa, Khalifa N.
    Hamouda, Abdel Magid S.
    Metadata
    Show full item record
    Abstract
    High-dimensional variability monitoring and diagnosing is of great prominence for the quality improvement and cost reduction. Most of the existing control charts are mainly based on the assumption that the in-control covariance matrix is known in prior. This paper proposes a new control chart for monitoring of variability of high-dimensional process under the sparsity conditions. The proposed control chart uses the adaptive thresholding LASSO rule for estimating the unknown covariance matrix. To evaluate the performance of the proposed chart, named as T-COV, the signal probability was estimated under several patterns of out-of-control conditions and compared with the conditional entropy (CE) control chart. This paper uses the process of spur gear production as a real-world example to illustrate the operating procedures of the T-COV chart. The results of the simulation and real studies have revealed the advantage of the T-COV chart over the CE in quickly capturing and precisely diagnosing the deviation in the covariance matrix of the high-dimensional processes.
    DOI/handle
    http://dx.doi.org/10.1016/j.cie.2020.106465
    http://hdl.handle.net/10576/56162
    Collections
    • Mechanical & Industrial Engineering [‎1465‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video