• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الميكانيكية والصناعية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الميكانيكية والصناعية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Phase-I monitoring of high-dimensional covariance matrix using an adaptive thresholding LASSO rule

    No Thumbnail [120x130]
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    التاريخ
    2020
    المؤلف
    Abdella, Galal M.
    Maleki, Mohammad Reza
    Kim, Sangahn
    Al-Khalifa, Khalifa N.
    Hamouda, Abdel Magid S.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    High-dimensional variability monitoring and diagnosing is of great prominence for the quality improvement and cost reduction. Most of the existing control charts are mainly based on the assumption that the in-control covariance matrix is known in prior. This paper proposes a new control chart for monitoring of variability of high-dimensional process under the sparsity conditions. The proposed control chart uses the adaptive thresholding LASSO rule for estimating the unknown covariance matrix. To evaluate the performance of the proposed chart, named as T-COV, the signal probability was estimated under several patterns of out-of-control conditions and compared with the conditional entropy (CE) control chart. This paper uses the process of spur gear production as a real-world example to illustrate the operating procedures of the T-COV chart. The results of the simulation and real studies have revealed the advantage of the T-COV chart over the CE in quickly capturing and precisely diagnosing the deviation in the covariance matrix of the high-dimensional processes.
    DOI/handle
    http://dx.doi.org/10.1016/j.cie.2020.106465
    http://hdl.handle.net/10576/56162
    المجموعات
    • الهندسة الميكانيكية والصناعية [‎1465‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video

    NoThumbnail