• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Digital twin in energy industry: Proposed robust digital twin for power plant and other complex capital-intensive large engineering systems

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2352484722005522-main.pdf (6.906Mb)
    Date
    2022
    Author
    Sleiti, Ahmad K.
    Kapat, Jayanta S.
    Vesely, Ladislav
    Metadata
    Show full item record
    Abstract
    The complex future power plants require digital twin (DT) architecture to achieve high reliability, availability and maintainability at lower cost. The available research on DT for power plants is limited and lacks details on DT comprehensiveness and robustness. The main focus of the present study is to propose a comprehensive and robust DT architecture for power plants that can also be used for other similar complex capital-intensive large engineering systems. First, overviews are conducted for DT key research and development for power plants and related energy savings applications to provide current status, guidelines and research gaps. Then, the requirements and rules for the power plant DT are established and the major DT components are determined. These components include the physics-based formulations; the statistical analysis of data from the sensor network; the real-time data; the pre-performed localized in-depth simulations to predict activities of the corresponding physical twin; and the system Genome with a digital thread that connects all these components together. Recommendations and future directions are made for the power plant DT development including the need for real data and physical description of the overall system focusing on each component individually and on the overall connections. Data-driven algorithms with capabilities to predict the system's dynamic behavior still need to be developed. The data-driven approach alone is not sufficient and a low-order physics based model should operate in tandem with the updated latest system parameters to allow interpretation and enhancing the results from the data-driven process. Discrepancies between the dynamic system models (DSM) and anomaly detection and deep learning (ADL) require in-depth localized off-line simulations. Furthermore, this paper demonstrates the advantages of the developed ADL algorithm approach and DSM prediction of the DT using vector autoregressive model for anomaly detection in utility gas turbines with data from an operational power plant.
    DOI/handle
    http://dx.doi.org/10.1016/j.egyr.2022.02.305
    http://hdl.handle.net/10576/56210
    Collections
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video