• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • حقوق النشر
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الميكانيكية والصناعية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الميكانيكية والصناعية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Digital twin in energy industry: Proposed robust digital twin for power plant and other complex capital-intensive large engineering systems

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S2352484722005522-main.pdf (6.906Mb)
    التاريخ
    2022
    المؤلف
    Sleiti, Ahmad K.
    Kapat, Jayanta S.
    Vesely, Ladislav
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The complex future power plants require digital twin (DT) architecture to achieve high reliability, availability and maintainability at lower cost. The available research on DT for power plants is limited and lacks details on DT comprehensiveness and robustness. The main focus of the present study is to propose a comprehensive and robust DT architecture for power plants that can also be used for other similar complex capital-intensive large engineering systems. First, overviews are conducted for DT key research and development for power plants and related energy savings applications to provide current status, guidelines and research gaps. Then, the requirements and rules for the power plant DT are established and the major DT components are determined. These components include the physics-based formulations; the statistical analysis of data from the sensor network; the real-time data; the pre-performed localized in-depth simulations to predict activities of the corresponding physical twin; and the system Genome with a digital thread that connects all these components together. Recommendations and future directions are made for the power plant DT development including the need for real data and physical description of the overall system focusing on each component individually and on the overall connections. Data-driven algorithms with capabilities to predict the system's dynamic behavior still need to be developed. The data-driven approach alone is not sufficient and a low-order physics based model should operate in tandem with the updated latest system parameters to allow interpretation and enhancing the results from the data-driven process. Discrepancies between the dynamic system models (DSM) and anomaly detection and deep learning (ADL) require in-depth localized off-line simulations. Furthermore, this paper demonstrates the advantages of the developed ADL algorithm approach and DSM prediction of the DT using vector autoregressive model for anomaly detection in utility gas turbines with data from an operational power plant.
    DOI/handle
    http://dx.doi.org/10.1016/j.egyr.2022.02.305
    http://hdl.handle.net/10576/56210
    المجموعات
    • الهندسة الميكانيكية والصناعية [‎1508‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video