• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • رسائل الماجستير وأطروحات الدكتوراه
  • كلية الآداب والعلوم
  • الرياضيات والإحصاء والفيزياء
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • رسائل الماجستير وأطروحات الدكتوراه
  • كلية الآداب والعلوم
  • الرياضيات والإحصاء والفيزياء
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    ON THE GAUSSIAN PROCESS FOR STATIONARY AND NON-STATIONARY TIME SERIES PREDICTION FOR THE QATAR STOCK MARKET

    عرض / فتح
    Batoul ALFakih_OGS Approved Thesis.pdf (1.617Mb)
    التاريخ
    2024-06
    المؤلف
    AL FAKIH, BATOUL MOHAMAD KAZEM
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    This research adopts a Gaussian prediction model for non-stationary time series. Then, we discuss four transformation techniques: Generalized Optimal Wavelet Decomposition Algorithm (GOWDA), Hilbert Huang transform (HHT), Detrending based on Echo State Networks (DESN), and Kolmogorov-Zurbenco (KZ) filter. GOWDA is an algorithm that runs the continuous wavelet transform (CWT) several times using different mother wavelet functions, maximal levels, and thresholding techniques. It chooses a combination with minimal error. Meanwhile, HHT combines echo state networks (ESNs), which decompose the time series into intrinsic mode functions (IMFs). Then, the Hilbert spectral analysis is applied to the IMFs before reconstructing the denoised signal. DESN is a neural network algorithm with minimal assumptions. KZ filter is a moving average algorithm that is easy to understand and implement. When comparing the performance of these methods with the Gaussian prediction model, it was found that the HHT reconstructed before prediction gave the best results.
    DOI/handle
    http://hdl.handle.net/10576/56261
    المجموعات
    • الرياضيات والإحصاء والفيزياء [‎35‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video