• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • حقوق النشر
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Terahertz Multiple Access: A Deep Reinforcement Learning Controlled Multihop IRS Topology

    Thumbnail
    عرض / فتح
    Terahertz_Multiple_Access_A_Deep_Reinforcement_Learning_Controlled_Multihop_IRS_Topology.pdf (2.823Mb)
    التاريخ
    2024
    المؤلف
    Shehab, Muhammad
    Elsayed, Mohamed
    Almohamad, Abdullateef
    Badawy, Ahmed
    Khattab, Tamer
    Zorba, Nizar
    Hasna, Mazen
    Trinchero, Daniele
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    We explore THz communication uplink multi-access with multi-hop Intelligent reflecting surfaces (IRSs) under correlated channels. Our aims are twofold: 1) enhancing the data rate of a desired user while dealing with interference from another user and 2) maximizing the combined data rate. Both tasks involve non-convex optimization challenges. For the first aim, we devise a sub-optimal analytical approach that focuses on maximizing the desired user's received power, leading to an over-determined system. We also attempt to use approximate solutions utilizing pseudo-inverse (Pinv) and block solution (BLS) based methods. For the second aim, we establish a loose upper bound and employ an exhaustive search (ES). We employ deep reinforcement learning (DRL) to address both aims, demonstrating its effectiveness in complex scenarios. DRL outperforms mathematical approaches for the first aim, with the performance improvement of DDPG over the block solution ranging from 8% to 57.12%, and over the pseudo-inverse ranging from 41% to 190% for a correlation-factor equal to 1. Moreover, DRL closely approximates the ES for the second aim. Furthermore, our findings show that as channel correlation increases, DRL's performance improves, capitalizing on the correlation for enhanced statistical learning.
    DOI/handle
    http://dx.doi.org/10.1109/OJCOMS.2024.3357701
    http://hdl.handle.net/10576/56600
    المجموعات
    • علوم وهندسة الحاسب [‎2484‎ items ]
    • الهندسة الكهربائية [‎2848‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video