• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Privacy-preserving Deep-learning Models for Fingerprint Data using Differential Privacy

    Thumbnail
    التاريخ
    2023
    المؤلف
    Mohammadi, Maryam
    Sabry, Farida
    Labda, Wadha
    Malluhi, Qutaibah
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Fingerprint recognition is a widely adopted biometric authentication method that leverages the unique characteristics of fingerprints to identify individuals. Its applications range from access control and authentication to forensic science, making the development of a robust, precise, and secure model for fingerprint recognition and analysis of paramount importance. Recently, deep learning and machine learning models have shown promise in this field, however, the use of these models raises significant privacy concerns as there is a potential for private fingerprint data to be compromised. This research aims to address these concerns by incorporating differential privacy techniques to protect the privacy of fingerprints. It provides evidence that the use of differential privacy technique leads to acceptable trade-off between preserving the privacy of fingerprints and accuracy of fingerprint recognition systems while maintaining robustness against model inversion attacks. With a noise multiplier of 0.01, the verification model attains a good accuracy of 89.32% at privacy budget ε = 1.2, and less than 80% at lower privacy budget for the identification model.
    DOI/handle
    http://dx.doi.org/10.1145/3579987.3586568
    http://hdl.handle.net/10576/56733
    المجموعات
    • علوم وهندسة الحاسب [‎2428‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video