• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Efficient parallel skyline query processing for high-dimensional data

    Thumbnail
    Date
    2019
    Author
    Tang, Mingjie
    Yu, Yongyang
    Aref, Walid G.
    Malluhi, Qutaibah M.
    Ouzzani, Mourad
    Metadata
    Show full item record
    Abstract
    Given a set of multidimensional data points, skyline queries retrieve those points that are not dominated by any other points in the set. Due to the ubiquitous use of skyline queries, such as in preference-based query answering and decision making, and the large amount of data that these queries have to deal with, enabling their scalable processing is of critical importance. However, there are several outstanding challenges that have not been well addressed. More specifically, in this paper, we are tackling the data straggler and data skew challenges introduced by distributed skyline query processing, as well as the ensuing high computation cost of merging skyline candidates. We thus introduce a new efficient three-phase approach for large scale processing of skyline queries. In the first preprocessing phase, the data is partitioned along the Z-order curve. We utilize a novel data partitioning approach that formulates data partitioning as an optimization problem to minimize the size of intermediate data. In the second phase, each compute node partitions the input data points into disjoint subsets, and then performs the skyline computation on each subset to produce skyline candidates in parallel. In the final phase, we build an index and employ an efficient algorithm to merge the generated skyline candidates. Extensive experiments demonstrate that the proposed skyline algorithm achieves more than one order of magnitude enhancement in performance compared to existing state-of-the-art approaches.
    DOI/handle
    http://dx.doi.org/10.1109/ICDE.2019.00251
    http://hdl.handle.net/10576/56745
    Collections
    • Computer Science & Engineering [‎2429‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video