• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    RES-EV: Identifying EV-Households under High AC Load Using a Residual-Based Model

    Thumbnail
    التاريخ
    2024
    المؤلف
    Aly, Hussein
    Al-Ali, Abdulaziz
    Al-Ali, Abdulla
    Malluhi, Qutaibah
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    This paper introduces a novel residual-based model to identify households with Battery Electric Vehicles (EVs) under high Air Conditioning (AC) load. The considerable energy demands of AC units can obscure charging events for EVs. In this work we propose a residual based model which leverages the distinctive characteristics of EV charging patterns, marked by unpredictable spikes in energy consumption, and the more predictable nature of AC load. Our proposed approach involves training a lightweight forecasting model to predict overall household consumption and utilizes the residuals of this model for identifying household with EVs. The residual-based model, ResEV-AR, demonstrated a substantial advantage in F1 score (5.8% and 7.32%) compared to state-of-the-art models such as EVS and KBF, respectively. Additionally, a simpler residual model, ResEV-SRM, exhibited a 3.5% F1 score advantage over EVS, coupled with an impressive 11-fold reduction in computation time.
    DOI/handle
    http://dx.doi.org/10.1109/ENERGYCON58629.2024.10488793
    http://hdl.handle.net/10576/56749
    المجموعات
    • علوم وهندسة الحاسب [‎2429‎ items ]
    • الذكاء المعلوماتي [‎98‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video