Evaluation of flow pattern recognition and void fraction measurement in two phase flow independent of oil pipeline's scale layer thickness
View/ Open
Publisher version (Check access options)
Check access options
Date
2021Author
Roshani, MohammadmehdiPhan, Giang T.T.
Jammal Muhammad Ali, Peshawa
Hossein Roshani, Gholam
Hanus, Robert
Duong, Trung
Corniani, Enrico
Nazemi, Ehsan
Kalmoun, El Mostafa
...show more authors ...show less authors
Metadata
Show full item recordAbstract
The main objective of the present research is to combine the effect of scale thickness on the flow pattern and characteristics of two-phase flow that is used in oil industry. In this regard, an intelligent nondestructive technique based on combination of gamma radiation attenuation and artificial intelligence is proposed to determine the type of flow pattern and gas volume percentage in two phase flow independent of petroleum pipeline's scale layer thickness. The proposed system includes a dual energy gamma source, composed of Barium-133 and Cesium-137 radioisotopes, and two sodium iodide detectors for recording the transmitted and scattered photons. Support Vector Machine was implemented for regime identification and Multi-Layer Perceptron with Levenberg Marquardt algorithm was utilized for void fraction prediction. Total count in the scattering detector and counts under photo peaks of Barium-133 and Cesium-137 were assigned as the inputs of networks. The results show the ability of presented system to identify the annular regime and measure the void fraction independent of petroleum pipeline's scale layer thickness.
Collections
- Mathematics, Statistics & Physics [742 items ]