• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Rate Control for RIS-Empowered Multi-Cell Dual-Connectivity HetNets: A Distributed Multi-Task DRL Approach

    View/Open
    Rate_Control_for_RIS-Empowered_Multi-Cell_Dual-Connectivity_HetNets_A_Distributed_Multi-Task_DRL_Approach.pdf (3.889Mb)
    Date
    2024
    Author
    Alwarafy, Abdulmalik
    Abdallah, Mohamed
    Al-Dhahir, Naofal
    Khattab, Tamer
    Hamdi, Mounir
    Metadata
    Show full item record
    Abstract
    Heterogeneous wireless networks (HetNets), where networks are deployed with ultra-dense small cells (SCs), is one of the main enabling technologies for future wireless networks. In such networks, signals are vulnerable to severe blockage, interference, and intermittent connectivity. This can be largely overcome using the emerging Reconfigurable Intelligent Surface (RIS) technology that can enhance HetNets performance by controlling the propagation environment. However, jointly optimizing the parameters of base stations’ (BSs’) active beamforming and RISs’ passive beamforming is a major challenge in RIS-empowered HetNets. In this paper, we investigate the issue of rate control in RIS-empowered multi-cell multiple-input single-output (MISO) HetNets via joint users’ equipment (UEs) rate fairness and SCs rate load balancing. We assume RIS-assisted SC BSs at mmWave underlying a RIS-assisted macrocell (MC) BS at sub-6GHz serving dual-connectivity UEs that can concurrently connect to the MC BS and a single SC BS. Then, we formulate an optimization problem whose objective is to jointly optimize the active transmit beamforming vectors of the MC and SCs BSs on the one hand and the passive beamforming vectors of the MC and SCs RISs on the other hand. Due to the high non-convexity and complexity of the formulated problem, we propose a novel distributed Deep Deterministic Policy Gradient (DDPG)-based multi-task deep reinforcement learning (MTDRL) scheme to solve the problem and learn network dynamics. Through deliberate definitions of MTDRL agent’s tasks and their corresponding main elements, we demonstrate via simulations that our proposed scheme guarantees a fair distribution of rates within UEs and SCs. In addition, we quantify the robustness of our proposed MTDRL scheme compared with some benchmarks in terms of convergence speed and utility values.
    DOI/handle
    http://dx.doi.org/10.1109/TWC.2024.3409430
    http://hdl.handle.net/10576/57783
    Collections
    • Electrical Engineering [‎2822‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video