• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Detecting market manipulation in stock market data

    Thumbnail
    View/Open
    Detecting market manipulation in stock market data.pdf (921.8Kb)
    Date
    2017-06
    Author
    Al-Thani, Haya A
    Metadata
    Show full item record
    Abstract
    Anomaly Detection is an extensively researched problem that has diverse applications in many domains. Anomaly detection is the process of finding data points or patterns that do not conform to expected behavior within a dataset. Solutions to this problem have used techniques from disciplines such as statistics, machine learning, data mining, spectral theory and information theory. In the case of stock market data, the input is a non-linear complex time series that render statistical methods ineffective. The aim of this thesis, is to detect anomalies within the Standard and Poor and Qatar Stock Exchange using the behavior of similar time series. Many works on stock market manipulation focus on supervised learning techniques, which require labeled datasets. The labeling process requires substantial efforts. Anomalous behavior is also dynamic in nature. For those reasons, the development of an unsupervised market manipulation detection technique would be very interesting. The Contextual Anomaly Detector (CAD) is an unsupervised method that finds anomalies by looking at similarly behaving time series and uses them to predict expected values. When the predicted value is different from the actual value in the time series by a certain threshold, it is considered an anomaly. This thesis will look at the Contextual Anomaly Detector (CAD) and implement a different preprocessing step to improve recall and precision.
    DOI/handle
    http://hdl.handle.net/10576/5783
    Collections
    • Computing [‎103‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video