• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • حقوق النشر
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة المدنية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة المدنية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Random forest-based algorithms for accurate evaluation of ultimate bending capacity of steel tubes

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S2352012422006609-main.pdf (3.524Mb)
    التاريخ
    2022
    المؤلف
    Ben Seghier, Mohamed El Amine
    Plevris, Vagelis
    Solorzano, German
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Despite the existence of methods for estimating the behavior of steel circular tubes subjected to pure bending, analytical models are still restricted due to the problem's complexity and significant nonlinearity. Using the random forest (RF) as the basic model, novel intelligent models are constructed to estimate the ultimate pure bending capacity of circular steel tubes in this study. The RF model's parameters are optimized using three nature inspired optimization algorithms, namely, the particle swarm optimization (PSO), ant colony optimization (ACO) and whale optimization algorithm (WOA). In the experimental part, a database of 104 tests that comprise 49 and 55 pure bending tests conducted on fabricated and cold-formed steel circular tubes, respectively, are evaluated and utilized to investigate the applicability of the hybrid RF-models. A single RF model is also built for comparative reasons in order to estimate the ultimate pending capacity. Various statistical and graphical measures are used to evaluate the performance of the developed models. The results show that the proposed RF-based nature-inspired algorithms can outperform the original RF predictive model. When the hybrid-RF models were assessed, it was discovered that the RF-WOA performed best. In addition, the influence of each parameter on the prediction findings based on the best RF-model is investigated via sensitivity analysis. Taking into account the overall findings, the hybrid RF-models may be used as powerful tools to predict the ultimate bending capacity of circular steel tubes and may be viable to aid technicians in making proper judgments.
    DOI/handle
    http://dx.doi.org/10.1016/j.istruc.2022.08.007
    http://hdl.handle.net/10576/59644
    المجموعات
    • الهندسة المدنية [‎877‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video