• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Data Driven Optimization of Inter-Frequency Mobility Parameters for Emerging Multi-band Networks

    عرض / فتح
    Data_Driven_Optimization_of_Inter-Frequency_Mobility_Parameters_for_Emerging_Multi-band_Networks.pdf (5.775Mb)
    التاريخ
    2020
    المؤلف
    Bin Farooq, Muhammad Umar
    Manalastas, Marvin
    Raza, Waseem
    Ijaz, Aneeqa
    Zaidi, Syed Muhammad Asad
    Abu-Dayya, Adnan
    Imran, Ali
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Densification and multi-band operation in 5G and beyond pose an unprecedented challenge for mobility management, particularly for inter-frequency handovers. The challenge is aggravated by the fact that the impact of key inter-frequency mobility parameters, namely A5 time to trigger (TTT), A5 threshold1 and A5 threshold2 on the system's performance is not fully understood. These parameters are fixed to a gold standard value or adjusted through hit and trial. This paper presents a first study to analyze and optimize A5 parameters for jointly maximizing two key performance indicators (KPIs): Reference signal received power (RSRP) and handover success rate (HOSR). As analytical modeling cannot capture the system-level complexity, a data driven approach is used. By developing XGBoost based model, that outperforms other models in terms of accuracy, we first analyze the concurrent impact of the three parameters on the two KPIs. The results reveal three key insights: 1) there exist optimal parameter values for each KPI; 2) these optimal values do not necessarily belong to the current gold standard; 3) the optimal parameter values for the two KPIs do not overlap. We then leverage the Sobol variance-based sensitivity analysis to draw some insights which can be used to avoid the parametric conflict while jointly maximizing both KPIs. We formulate the joint RSRP and HOSR optimization problem, show that it is non-convex and solve it using the genetic algorithm (GA). Comparison with the brute force-based results show that the proposed data driven GA-aided solution is 48x faster with negligible loss in optimality.
    DOI/handle
    http://dx.doi.org/10.1109/GLOBECOM42002.2020.9348101
    http://hdl.handle.net/10576/60231
    المجموعات
    • الهندسة الكهربائية [‎2844‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video