• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز قطر لابتكارات التكنولوجيا
  • أبحاث مركز قطر لابتكارات التكنولوجيا
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز قطر لابتكارات التكنولوجيا
  • أبحاث مركز قطر لابتكارات التكنولوجيا
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    AVEC: A Statistical Framework for Adaptive Vehicular Edge Data Cleaning

    Thumbnail
    التاريخ
    2020
    المؤلف
    Ben Brahim, Mohamed
    Menouar, Hamid
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    In Vehicle-to-Vehicle and Vehicle-to-Infrastructure (V2X) communication, a large amount of data and information is transmitted over the air by the vehicles. If this data is captured, e.g., by a network of roadside units (RSUs) deployed at strategic locations, cleaned and processed, it may generate an interesting value. The process of cleaning the data involves the removal of data duplicates, as two or more RSUs may capture the same information from the same vehicle. Indeed, a vehicle can be located inside the communication range of multiple RSUs at the same time. The data cleaning process can be achieved through a centralized platform in the backend, where all the deployed RSUs connect and upload their collected data. To avoid overloading the backend, we propose to involve the RSUs in the cleaning process. Ideally, the RSU should be able to detect if any received information from a passing vehicle has not been also received by another nearby RSU. To achieve that, we use an adaptive probability-based splitting of the sensing range. Such a continuous process allows each RSU to adjust the probability distribution of the communication reliability after a sensing time window and to check parameters of neighbor nodes. Simulation results show the efficiency of our solution and demonstrate its ability to adapt with the network dynamicity, by adjusting the algorithm parameters, until reaching a good level of data cleaning compared to static and random approaches.
    DOI/handle
    http://dx.doi.org/10.1007/978-981-15-3750-9_4
    http://hdl.handle.net/10576/60244
    المجموعات
    • أبحاث مركز قطر لابتكارات التكنولوجيا [‎278‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video