• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز قطر لابتكارات التكنولوجيا
  • أبحاث مركز قطر لابتكارات التكنولوجيا
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز قطر لابتكارات التكنولوجيا
  • أبحاث مركز قطر لابتكارات التكنولوجيا
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On the Placement of UAV Docking Stations for Future Intelligent Transportation Systems

    عرض / فتح
    On_the_Placement_of_UAV_Docking_Stations_for_Future_Intelligent_Transportation_Systems.pdf (531.5Kb)
    التاريخ
    2017
    المؤلف
    Ghazzai, Hakim
    Menouar, Hamid
    Kadri, Abdullah
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Unmanned Aerial Vehicles (UAV) have attracted a lot of attention in a variety of fields especially in intelligent transportation systems (ITS). They constitute an innovative mean to support existing technologies to control road traffic and monitor incidents. Due to their energy-limited capacity, UAVs are employed for temporary missions and, during idle periods, they are placed in stations where they can replenish their batteries. In this paper, the problem of UAV docking station placement for ITS is investigated. This constitutes the first step in managing UAV- assisted ITS. The objective is to determine the best locations for a given number of docking stations that the operator aims to install in a large geographical area. Based on average road network statistics, two essential conditions are imposed in making the placement decision: i) the UAV has to reach the incident location in a reasonable time, ii) there is no risk of UAV's battery failure during the mission. Two algorithms, namely a penalized weighted k-means algorithm and the particle swarm optimization algorithm, are proposed. Results show that both algorithms achieve close coverage efficiency in spite of their different conceptual constructions.
    DOI/handle
    http://dx.doi.org/10.1109/VTCSpring.2017.8108676
    http://hdl.handle.net/10576/60447
    المجموعات
    • أبحاث مركز قطر لابتكارات التكنولوجيا [‎278‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video