Simple but not naive: Fine-grained arabic dialect identification using only n-grams
المؤلف | Eltanbouly, Sohaila |
المؤلف | Bashendy, May |
المؤلف | Elsayed, Tamer |
تاريخ الإتاحة | 2024-11-05T06:05:20Z |
تاريخ النشر | 2019 |
اسم المنشور | ACL 2019 - 4th Arabic Natural Language Processing Workshop, WANLP 2019 - Proceedings of the Workshop |
المصدر | Scopus |
الملخص | This paper presents the participation of Qatar University team in MADAR shared task, which addresses the problem of sentence-level fine-grained Arabic Dialect Identification over 25 different Arabic dialects in addition to the Modern Standard Arabic. Arabic Dialect Identification is not a trivial task since different dialects share some features, e.g., utilizing the same character set and some vocabularies. We opted to adopt a very simple approach in terms of extracted features and classification models; we only utilize word and character ngrams as features, and Naive Bayes models as classifiers. Surprisingly, the simple approach achieved non-naive performance. The official results, reported on a held-out testing set, show that the dialect of a given sentence can be identified at an accuracy of 64.58% by our best submitted run. |
اللغة | en |
الناشر | Association for Computational Linguistics (ACL) |
الموضوع | Character sets Classification (of information) Arabic dialects Dialect identification Fine grained Modern standards N-grams Qatar university Sentence level Simple approach Simple++ University teams Bayesian networks |
النوع | Conference Paper |
الصفحات | 214-218 |
الملفات في هذه التسجيلة
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2402 items ]