• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    bigIR at TREC 2019: Graph-based Analysis for News Background Linking

    Thumbnail
    عرض / فتح
    QU.N.pdf (572.7Kb)
    التاريخ
    2019
    المؤلف
    Essam, Marwa
    Elsayed, Tamer
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Nowadays, it is very rare to find an online news article that is self-contained with everything a reader would want to know about the article's story. Therefore, it became vital for any article to contain links to other articles or resources that provide the background and contextual knowledge required to conceptualize the article's story. However, finding useful background and contextual links can be a challenging problem. In this paper, we address this problem in the context of the participation of the bigIR team at Qatar University in the news background linking task of the TREC 2019 news track. Our methods mainly relied on a graph-based analysis of the query-article's text to extract its most representative and influential keywords, and then use these keywords as a search query to retrieve the article's background links from a collection of news articles. All of our submitted runs outperformed the TREC hypothetical run that achieved a median effectiveness over all queries. Moreover, our best submitted run was ranked second among 28 runs submitted to the task, indicating the potential effectiveness of our approach.
    DOI/handle
    http://hdl.handle.net/10576/60892
    المجموعات
    • علوم وهندسة الحاسب [‎2482‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video