• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar University Young Scientists Center
  • Research of Qatar University Young Scientists Center
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar University Young Scientists Center
  • Research of Qatar University Young Scientists Center
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Experimental analysis of free-standing and substrate-constrained Ga-doped ZnO nanostructured thermoelectric films

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    PIIS2405844024158677.pdf (2.364Mb)
    Date
    2024-11-15
    Author
    Aicha S., Lemine
    Bhadra, Jolly
    Popelka, Anton
    Maurya, Muni Raj
    Sadasivuni, Kishor Kumar
    Shakoor, Rana Abdul
    Zubair, Ahmad
    Al-Thani, Noora J.
    Hasan, Anwarul
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Developing thermoelectric films without substrates—free-standing films—eliminates substrate-induced effects on performance and meets the flexibility requirements of emerging wearable thermoelectric applications. This study investigates Gallium-doped Zinc Oxide (GZO), composed of abundant and non-toxic elements, to fabricate a substrate-free GZO film via 3D printing and compares its structural, chemical, and thermoelectric properties with those of a substrate-constrained GZO film produced through chemical deposition. Both films exhibited uniform crystal structures and phase purity; however, the substrate-constrained film displayed additional diffraction peaks, suggesting potential substrate interactions. The 3D-printed free-standing film effectively eliminated the tensile stresses observed in the substrate-constrained film. FE-STEM analysis revealed nanostructures with homogeneous elemental distribution in both films, though the substrate-constrained film showed discontinuities, such as pores, likely caused by post-deposition annealing treatment. XPS analysis highlighted differences in chemical states and elemental compositions between the films, influenced by fabrication methods, substrate-induced stresses, and surface energy mismatches. The free-standing GZO film developed through 3D printing exhibited a more balanced incorporation of Zn and O, as it was not subject to substrate or post-deposition annealing constraints. Consequently, it demonstrated a 14 % increase in electrical conductivity and a 91 % improvement in the Seebeck coefficient compared to the substrate-constrained film, resulting in a higher room-temperature power factor of 261 nW/m·K2. These findings underscore the potential of 3D-printed free-standing GZO films to advance thermoelectric applications, offering a promising alternative to overcome the challenges of substrate-constrained films and further drive innovation in the field.
    URI
    https://www.sciencedirect.com/science/article/pii/S2405844024158677
    DOI/handle
    http://dx.doi.org/10.1016/j.heliyon.2024.e39836
    http://hdl.handle.net/10576/60939
    Collections
    • Biomedical Research Center Research [‎785‎ items ]
    • Center for Advanced Materials Research [‎1482‎ items ]
    • Mechanical & Industrial Engineering [‎1461‎ items ]
    • Research of Qatar University Young Scientists Center [‎213‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video