• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    RL-Based Incentive Cooperative Data Learning Framework Over Blockchain in Healthcare Applications (RL-ICDL-BC)

    عرض / فتح
    RL-Based_Incentive_Cooperative_Data_Learning_Framework_Over_Blockchain_in_Healthcare_Applications_RL-ICDL-BC.pdf (1.005Mb)
    التاريخ
    2024
    المؤلف
    Riahi, Ali
    Erbad, Aiman
    Bouras, Abdelaziz
    Mohamed, Amr
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    In recent years, significant strides in various domains have been fueled by the convergence of large-scale datasets and sophisticated machine learning algorithms. Nevertheless, the utilization of these datasets poses challenges, including privacy concerns, data ownership issues, and resource limitations. Cooperative data learning approaches have emerged as a solution, allowing multiple parties to collaboratively train machine learning models using their distributed data. While Federated Learning (FL) addresses the issue of privacy concerns, reluctance among data owners to share their data remains a challenge. It is imperative to provide incentives for participation in these cooperative learning settings to boost effectiveness and promote the widespread adoption of such approaches. This paper introduces an RL-ICDL-BC framework that seamlessly integrates principles of incentive design and cooperative learning, fostering effective collaboration among data owners. The framework's primary objective is to motivate and reward participants for contributing their models while simultaneously preserving privacy and ensuring fairness in the learning process. Experimental evaluations utilizing Covid-19 datasets and diverse collaborative learning scenarios demonstrate the effectiveness of the proposed framework. The results reveal that incentivizing cooperative data learning leads to increased participation rates, improved model performance, and enhanced fairness in the learning process. Despite the challenges posed by non-iid data, the experiments yield outstanding outcomes, showcasing a Covid19 virus detection accuracy rate of approximately 99%. This exceptional accuracy underscores the efficacy of our proposed approach in effectively detecting and mitigating the transmission of infectious diseases.
    DOI/handle
    http://dx.doi.org/10.1109/IWCMC61514.2024.10592513
    http://hdl.handle.net/10576/61036
    المجموعات
    • علوم وهندسة الحاسب [‎2429‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video