Optimized energy procurement for cellular networks with uncertain renewable energy generation
Author | Ben Rached, Nadhir |
Author | Ghazzai, Hakim |
Author | Kadri, Abdullah |
Author | Alouini, Mohamed-Slim |
Available date | 2024-11-21T09:24:43Z |
Publication Date | 2016 |
Publication Name | Proceedings - IEEE Global Communications Conference, GLOBECOM |
Resource | Scopus |
Identifier | http://dx.doi.org/10.1109/GLOCOM.2016.7842105 |
ISSN | 23340983 |
Abstract | Renewable energy (RE) is an emerging solution for reducing carbon dioxide (CO2) emissions from cellular networks. One of the challenges of using RE sources is to handle its inherent uncertainty. In this paper, a RE powered cellular network is investigated. For a one-day operation cycle, the cellular network aims to reduce energy procurement costs from the smart grid by optimizing the amounts of energy procured from their locally deployed RE sources as well as from the smart grid. In addition to that, it aims to determine the extra amount of energy to be sold to the electrical grid at each time period. Chance constrained optimization is first proposed to deal with the randomness in the RE generation. Then, to make the optimization problem tractable, two well- know convex approximation methods, namely; Chernoff and Chebyshev based-approaches, are analyzed in details. Numerical results investigate the optimized energy procurement for various daily scenarios and compare between the performances of the employed convex approximation approaches. |
Sponsor | This work was made possible by NPRP grant # 6-001-2-001 from the Qatar National Research Fund (A member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors |
Language | en |
Publisher | IEEE |
Subject | Carbon dioxide Constrained optimization Electric power transmission networks Mobile telecommunication systems Renewable energy resources Wireless networks Cellular network Energy Energy procurement Operation cycles Procurement costs Renewable energies Renewable energy generation Renewable energy source Smart grid Uncertainty Smart power grids |
Type | Conference |
Pagination | 1-7 |
Files in this item
This item appears in the following Collection(s)
-
QMIC Research [219 items ]