• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Business and Economics
  • Accounting & Information Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Business and Economics
  • Accounting & Information Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    New Dimensions for Physical Layer Secret Key Generation: Excursion Lengths-Based Key Generation

    Thumbnail
    View/Open
    New_Dimensions_for_Physical_Layer_Secret_Key_Generation_Excursion_Lengths-Based_Key_Generation.pdf (1.240Mb)
    Date
    2024-06-10
    Author
    Adil, Muhammad
    Ullah Khan, Habib
    Arif, Mohammad
    Shah Nawaz, Mian
    Khan, Faheem
    Metadata
    Show full item record
    Abstract
    Physical Layer-based Secret Key Generation (PLSKG) between the legitimate nodes from the reciprocal wireless channel is a vastly studied area of Physical Layer Security (PLS). PLSKG aims to secure the wireless link between the legitimate nodes by symmetrically encrypting the wirelessly transmitted information via a secret key that is extracted from the common randomness of the stochastic wireless channel. PLSKG encompasses the intermediate steps of channel sampling, quantization, information reconciliation, and privacy amplification. The PLSKG algorithms are evaluated in terms of quantifiers such as Key Generation Rate (KGR), Key Agreement Probability (KAP), and randomness. The practical PLSKG algorithms (level-crossing algorithms) extract a secret key by analyzing the channel samples and assigning bit sequences to the channel samples lying in different quantization regions. Level-crossing algorithms are lossy and extract a secret key from the central samples of matched excursions between the legitimate nodes. This results in a reduced KGR as there is a scarcity of such matched excursions considering the fast variations of the wireless link between the legitimate nodes. This paper proposes a Two-Round Channel Parsing (TRCP) algorithm that exploits the correlation between the excursion lengths of the channel samples in addition to the sample correlation. TRCP effectively utilize the channel samples by reducing the sample losses incurred by lossy quantizers exploring a new dimension of correlated excursions of the channel samples between legitimate nodes. Simulation results demonstrate that the proposed TRCP scheme enhances the KGR and KAP performance of the secret key and also passes the National Institute of Standards and Technology (NIST) test suite of randomness.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85196088820&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2024.3411556
    http://hdl.handle.net/10576/61631
    Collections
    • Accounting & Information Systems [‎555‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video