• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Highly functionalized pH-triggered supramolecular nanovalve for targeted cancer chemotherapy

    View/Open
    Highly functionalized pH-triggered supramolecular nanovalve for targeted cancer chemotherapy (1).pdf (2.426Mb)
    Date
    2024-08-20
    Author
    Kawish, Muhammad
    Parveen, Samina
    Siddiqui, Nimra Naz
    Jahan, Humera
    Elhissi, Abdelbari
    Yasmeen, Saira
    Raza Shah, Muhammad
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Chemotherapeutic drug delivery systems are commonly limited by their short half-lives, poor bioavailability, and unsuccessful targetability. Herein, pH-responsive hybrid NPs consist of benzimidazole-coated mesoporous silica nanoparticles (BZ-MSN) loaded with naturally occurring flavonoid quercetin (QUE-BZ-MSN). The NPs were further capped with beta-cyclodextrin (BCD) to obtain our desired BCD-QUE-BZMSN, with a zeta potential around 7.05 ± 2.37 mV and diameter about 115.2 ± 19.02 nm. The abundance of BZ onto the nanoparticles facilitates targeted quercetin chemotherapy against model lung and liver cancer cell lines. FTIR, EDX, and NMR analyses revealed evidence of possible surface functionalizations. Powder XRD analysis showed that our designed BCD-QUE-BZMSN formulation is amorphous in nature. The UV and SEM showed that our designed BCD-QUE-BZMSN has high drug entrapment efficiency and a nearly spherical morphology. In vitro, drug release assessments show controlled pH-dependent release profiles that could enhance the targeted chemotherapeutic response against mildly acidic regions in cancer cell lines. The obtained BCD-QUE-BZMSN nanovalve achieved significantly higher cytotoxic efficacy as compared to QUE alone, which was evaluated by in vitro cellular uptake against liver and lung cancer cell lines, and the cellular morphological ablation was further confirmed via inverted microscopy. The outcomes of the study imply that our designed BCD-QUE-BZMSN nanovalve is a potential carrier for cancer chemotherapeutics.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85201621060&origin=inward
    DOI/handle
    http://dx.doi.org/10.1080/10837450.2024.2392271
    http://hdl.handle.net/10576/61714
    Collections
    • Pharmacy Research [‎1389‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video