• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Household electricity consumption prediction using database combinations, ensemble and hybrid modeling techniques

    Thumbnail
    التاريخ
    2024-12-01
    المؤلف
    Ramnath, Gaikwad Sachin
    Harikrishnan, R.
    Muyeen, S. M.
    Kotecha, Ketan
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Household electricity consumption (HEC) is changing over time, depends on multiple factors, and leads to effects on the prediction accuracy of the model. The objective of this work is to propose a novel methodology for improving HEC prediction accuracy. This study uses two original datasets, namely questionnaire survey (QS) and monthly consumption (MC), which contain data from 225 consumers from Maharashtra, India. The original datasets are combined to create three additional datasets, namely QS + MC, QS equation (QsEq) + next month’s consumptions, and QsEq + MC. Furthermore, the HEC prediction accuracy is boosted by applying different approaches, like correlation methods, feature engineering techniques, data quality assessment, heterogeneous ensemble prediction (HEP), and the hybrid model. Five HEP models are created using dataset combinations and machine learning algorithms. Based on the MC dataset, the random forest provides the best prediction of RMSE (36.18 kWh), MAE (25.73 kWh), and R2 (0.76). Similarly, QsEq + MC dataset adaptive boosting provides a better prediction of RMSE (36.77 kWh), MAE (26.18 kWh), and R2 (0.76). This prediction accuracy is further increased using the proposed hybrid model to RMSE (22.02 kWh), MAE (13.04 kWh), and R2 (0.92). This research work benefits researchers, policymakers, and utility companies in obtaining accurate prediction models and understanding HEC.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85205527965&origin=inward
    DOI/handle
    http://dx.doi.org/10.1038/s41598-024-57550-9
    http://hdl.handle.net/10576/61931
    المجموعات
    • الهندسة الكهربائية [‎2821‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video