• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evading Cyber-Attacks on Hadoop Ecosystem: A Novel Machine Learning-Based Security-Centric Approach towards Big Data Cloud

    Thumbnail
    عرض / فتح
    information-15-00558-v2.pdf (10.23Mb)
    التاريخ
    2024-09-01
    المؤلف
    Sharma, Neeraj A.
    Kumar, Kunal
    Khorshed, Tanzim
    Ali, A. B.M.Shawkat
    Khalid, Haris M.
    Muyeen, S. M.
    Jose, Linju
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The growing industry and its complex and large information sets require Big Data (BD) technology and its open-source frameworks (Apache Hadoop) to (1) collect, (2) analyze, and (3) process the information. This information usually ranges in size from gigabytes to petabytes of data. However, processing this data involves web consoles and communication channels which are prone to intrusion from hackers. To resolve this issue, a novel machine learning (ML)-based security-centric approach has been proposed to evade cyber-attacks on the Hadoop ecosystem while considering the complexity of Big Data in Cloud (BDC). An Apache Hadoop-based management interface “Ambari” was implemented to address the variation and distinguish between attacks and activities. The analyzed experimental results show that the proposed scheme effectively (1) blocked the interface communication and retrieved the performance measured data from (2) the Ambari-based virtual machine (VM) and (3) BDC hypervisor. Moreover, the proposed architecture was able to provide a reduction in false alarms as well as cyber-attack detection.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85205226986&origin=inward
    DOI/handle
    http://dx.doi.org/10.3390/info15090558
    http://hdl.handle.net/10576/61947
    المجموعات
    • الهندسة الكهربائية [‎2821‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video