• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Secure and efficient prediction of electric vehicle charging demand using 𝛼 2 -LSTM and AES-128 cryptography

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S2666546823000794-main.pdf (7.171Mb)
    التاريخ
    2024-05-01
    المؤلف
    Bharat, Manish
    Dash, Ritesh
    Reddy, K. Jyotheeswara
    Murty, A. S.R.
    C., Dhanamjayulu
    Muyeen, S. M.
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    In recent years, there has been a significant surge in demand for electric vehicles (EVs), necessitating accurate prediction of EV charging requirements. This prediction plays a crucial role in evaluating its impact on the power grid, encompassing power management and peak demand management. In this paper, a novel deep neural network based on α2 -LSTM is proposed to predict the demand for charging from electric vehicles at a 15-minute time resolution. Additionally, we employ AES-128 for station quantization and secure communication with users. Our proposed algorithm achieves a 9.2% reduction in both the Root Mean Square Error (RMSE) and the mean absolute error compared to LSTM, along with a 13.01% increase in demand accuracy. We present a 12-month prediction of EV charging demand at charging stations, accompanied by an effective comparative analysis of Mean Absolute Percentage Error (MAPE) and Mean Percentage Error (MPE) over the last five years using our proposed model. The prediction analysis has been conducted using Python programming.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85183997296&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.egyai.2023.100307
    http://hdl.handle.net/10576/62018
    المجموعات
    • الهندسة الكهربائية [‎2821‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video