• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A comprehensive framework for effective long-short term solar yield forecasting

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S2590174524000138-main.pdf (6.885Mb)
    التاريخ
    2024-04-01
    المؤلف
    Ray, Biplob
    Lasantha, Dimuth
    Beeravalli, Vijayalaxmi
    Anwar, Adnan
    Nurun Nabi, Md
    Sheng, Hanmin
    Rashid, Fazlur
    Muyeen, S. M.
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Due to the variability of Photovoltaic (PV) output, a forecasting framework is essential for grid connected PV plants to ensure a stable and uninterrupted power supply. Among existing prediction and forecasting algorithms, only some have attempted to provide a holistic framework for short and long-term forecasting of PV yield together using automated input feature selections and data cleaning features. Furthermore, it has been identified that many existing algorithms only predicted PV output instead of forecasting in future times; therefore, their reported accuracy needs to be upheld in forecasting scenarios. This paper has proposed a framework to streamline solar yield forecasting for both the short and long term to ensure effective integration of PV plant output with the main grid. The proposed framework has used a novel combination of XGBoost (eXtreme Gradient Boosting), time series seasonal decomposition and rolling LSTM (Long- and Short-Term Memory) model to address the need for a comprehensive forecasting framework in hourly, daily and yearly periods. Based on our experiment result, the developed framework has performed in 98% − 95% prediction accuracy with less than 0.15% normalized Root Mean Squire error (nRMSE). The framework has performed in 89%- 87% forecasting accuracy with less than 0.45% nRMSE. Both the prediction and forecasting performance of the proposed model have outperformed many benchmarks forecasting frameworks, including Long short-term memory (LSTM) based recurrent neural network (RNN), Full RNN (FRNN), Neural Network Ensemble (NNE), Neural Network with AdaBoost, and many more as detailed in our comparative study section.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85185483067&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.ecmx.2024.100535
    http://hdl.handle.net/10576/62020
    المجموعات
    • الهندسة الكهربائية [‎2821‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video