• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Pharmacological investigations of newly synthesized oxazolones and imidazolones as COX-2 inhibitors

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    2024_With Islam_SPJ_Oxazolones.pdf (7.081Mb)
    Date
    2024-10-19
    Author
    Saleem Naz Babari, Iqra
    Islam, Muhammad
    Saeed, Hamid
    Nadeem, Humaira
    Anwer Rathore, Hassaan
    Metadata
    Show full item record
    Abstract
    Oxazoles and Imidazoles are heterocyclic compounds with significant biological activities. The present study explores the pharmacological effects of some new oxazole and imidazole derivatives as potential COX-2 inhibitors. Docking studies of the compounds against targeted proteins COX-2 and TACE manifested good binding affinities for both the targets supporting their anti-inflammatory potential. Compounds (3F-A, 3F-B, N-A, N-B) were evaluated for in vivo anti-inflammatory effects by carrageenan-induced paw edema. Among all, compound N-A was found to be the most effective as it displayed most pronounced reduction in inflammation that was comparable to indomethacin. The in vivo tissue antioxidant activity was performed for estimation of the level of catalase, GSH, GST, and thiobarbituric acid in paw tissue. The results exhibited that targeted compounds improved the oxidative stress and restored the expression of enzymes. H &E staining revealed that aforesaid compounds displayed well-defined restoration of cellular damage. Compound NA exhibited maximum structural and functional preservation. Reduction in the expression of inflammatory markers was also analyzed by ELISA and maximum reduction in protein expression (COX-2 and TNF-a) was observed for compound N-B. Quantification of mRNA was done using PCR and a decrease in the expression of COX-2 mRNA level in treatment groups was depicted by all the new compounds but N-B showed maximum reduction in enzyme expression. All the results obtained from the present study have shown the significant anti-inflammatory potential of new compounds via the COX-2 inhibition pathway.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85207157818&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.jsps.2024.102191
    http://hdl.handle.net/10576/62021
    Collections
    • Pharmacy Research [‎1389‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video