• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • حقوق النشر
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Fuel Cell Aging Prediction Method Based on Symplectic Geometry Mode Decomposition and Divide-and-Conquer Gated Recurrent Unit

    Thumbnail
    التاريخ
    2024-01-01
    المؤلف
    Tian, Zhuang
    Ma, Chenyuhao
    Zhang, Ruiheng
    Zhou, Daming
    Huangfu, Yigeng
    Muyeen, S. M.
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The superposition of aging characteristics in fuel cells is a major cause of inaccurate predictions. Unlike traditional methods that mix linear and nonlinear aging characteristics, this paper develops a prediction method based on Symplectic Geometry Mode Decomposition and Divide-and-Conquer Gated Recurrent Units (SGMD-DCGRU). The SGMD uses symplectic geometric transformations to decompose the aging characteristics of fuel cells into three types: linear, periodic fluctuations, and nonlinear aging characteristics. Leveraging this foundation, the DCGRU network provides distinct predictions for each aging sub-characteristic through an integrated approach that includes environmental variable feature extraction, a periodic time node attention mechanism, and bidirectional gated recurrent units. This approach ensures compatibility between aging characteristics and data-driven algorithms, thereby improving prediction accuracy. Furthermore, the Kepler optimization algorithm (KOA) is designed to optimize the hyperparameters of the DCGRU network and embedded in the multi-step prediction strategy. Finally, static and dynamic aging data are used to verify the performance of the proposed algorithm in multi-step short-term prediction and long-term remaining useful life prediction. In this case, the proposed method can improve the reliability and efficiency of the fuel cell system in various industrial applications, thus improving the maintenance strategy and reducing the operating cost.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85209254862&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TEC.2024.3489436
    http://hdl.handle.net/10576/62035
    المجموعات
    • الهندسة الكهربائية [‎2848‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video