• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Incorporation of Robust Sliding Mode Control and Adaptive Multi-Layer Neural Network-Based Observer for Unmanned Aerial Vehicles

    Thumbnail
    عرض / فتح
    Incorporation_of_Robust_Sliding_Mode_Control_and_Adaptive_Multi-Layer_Neural_Network-Based_Observer_for_Unmanned_Aerial_Vehicles.pdf (1.830Mb)
    التاريخ
    2024-01-01
    المؤلف
    Akhtar, Zainab
    Naqvi, Syed Abbas Zilqurnain
    Hamayun, Mirza Tariq
    Ahsan, Muhammad
    Nadeem, Ahsan
    Muyeen, S. M.
    Oshnoei, Arman
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The control and state estimation of Unmanned Aerial Vehicles (UAVs) provide significant challenges due to their complex and nonlinear dynamics, as well as uncertainties arising from factors such as sensor noise, wind gusts, and parameter fluctuations. Neural network-based methods tackle these problems by accurately approximating unknown nonlinearities through training on input-output data. This paper proposes an adaptive Multi-layer Neural Network (MLNN) Luenberger observer-based control for altitude and attitude tracking of a quadrotor UAV. The MLNN observer, employing a modified back-propagation algorithm, is used for the quadrotor's state estimation. The adaptive nature of the proposed observer helps mitigate the effects of parameters such as wind gusts, measurement noise, and parameter variations. Subsequently, a sliding mode controller is designed based on the observed states to track the reference trajectories. Lyapunov stability is ensured by using the modified back-propagation weight update rule for the proposed MLNN observer. Simulation results demonstrate superior tracking performance of the proposed observer compared to the Sliding Mode Observer (SMO) and a Single Hidden Layer Neural Network (SHLNN) observer, even in the presence of the aforementioned parameters.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85198246504&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2024.3425429
    http://hdl.handle.net/10576/62077
    المجموعات
    • الهندسة الكهربائية [‎2821‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video