• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fault detection and classification in hybrid energy-based multi-area grid-connected microgrid clusters using discrete wavelet transform with deep neural networks

    Thumbnail
    View/Open
    s00202-024-02329-4.pdf (4.647Mb)
    Date
    2024-01-01
    Author
    Bramareswara Rao, S. N.V.
    Kumar, Y. V.Pavan
    Amir, Mohammad
    Muyeen, S. M.
    Metadata
    Show full item record
    Abstract
    Microgrid control and operation depend on fault detection and classification because it allows quick fault separation and recovery. Due to their reliance on sizable fault currents, classic fault detection techniques are no longer suitable for microgrids that employ inverter-interfaced distributed generation. Nowadays, deep learning algorithms are essential for ensuring the reliable, safe, and efficient operation of these complex energy systems. They enable quick responses to faults, reduce downtime, enhance energy efficiency, and contribute to the overall sustainability and resilience of microgrids. With this intent, this work proposes a “Discrete Wavelet Transform with Deep Neural Network (DWT-DNN)” for detecting and classifying the various faults that occurred in hybrid energy-based multi-area grid-connected microgrid clusters. The proposed DWT-DNN first extracts the input features from the point of common coupling of the cluster system using DWT, and then, these decomposed features are applied as input variables to train the DNN for the detection and classification of various faults. All the investigations are performed in the “MATLAB/Simulink 2022a” environment. To validate the effectiveness of the proposed DWT-DNN, the results are compared with wavelet packet transforms (WPT) in terms of accuracy in detecting and classifying the faults. From the simulation findings and observations, it is evident that the proposed DNN produced fruitful results.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85188725198&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s00202-024-02329-4
    http://hdl.handle.net/10576/62081
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video