• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • حقوق النشر
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fault detection and classification in hybrid energy-based multi-area grid-connected microgrid clusters using discrete wavelet transform with deep neural networks

    Thumbnail
    عرض / فتح
    s00202-024-02329-4.pdf (4.647Mb)
    التاريخ
    2024-01-01
    المؤلف
    Bramareswara Rao, S. N.V.
    Kumar, Y. V.Pavan
    Amir, Mohammad
    Muyeen, S. M.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Microgrid control and operation depend on fault detection and classification because it allows quick fault separation and recovery. Due to their reliance on sizable fault currents, classic fault detection techniques are no longer suitable for microgrids that employ inverter-interfaced distributed generation. Nowadays, deep learning algorithms are essential for ensuring the reliable, safe, and efficient operation of these complex energy systems. They enable quick responses to faults, reduce downtime, enhance energy efficiency, and contribute to the overall sustainability and resilience of microgrids. With this intent, this work proposes a “Discrete Wavelet Transform with Deep Neural Network (DWT-DNN)” for detecting and classifying the various faults that occurred in hybrid energy-based multi-area grid-connected microgrid clusters. The proposed DWT-DNN first extracts the input features from the point of common coupling of the cluster system using DWT, and then, these decomposed features are applied as input variables to train the DNN for the detection and classification of various faults. All the investigations are performed in the “MATLAB/Simulink 2022a” environment. To validate the effectiveness of the proposed DWT-DNN, the results are compared with wavelet packet transforms (WPT) in terms of accuracy in detecting and classifying the faults. From the simulation findings and observations, it is evident that the proposed DNN produced fruitful results.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85188725198&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s00202-024-02329-4
    http://hdl.handle.net/10576/62081
    المجموعات
    • الهندسة الكهربائية [‎2848‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video