• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • حقوق النشر
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A stochastic variance reduction gradient-based GSO-ANFIS optimized method for maximum power extraction of proton exchange membrane fuel cell

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S2590174523001617-main.pdf (6.298Mb)
    التاريخ
    2024-01-01
    المؤلف
    Reddy, K. Jyotheeswara
    Dash, Ritesh
    Subburaj, Vivekanandan
    Kumar, B. Hemanth
    Dhanamjayulu, C.
    Blaabjerg, Frede
    Muyeen, S. M.
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Proton Exchange Membrane Fuel Cells (PEMFCs) play a pivotal role in the clean energy landscape, yet their efficiency is contingent upon effective power optimization. This paper presents Maximum PowerPoint Tracking (MPPT) control schemes for PEMFCs, focusing on a ground-breaking methodology. Traditional MPPT controllers are instrumental in maintaining optimal performance; however, they often struggle with dynamic operating conditions. In response to this challenge, this research work presents a pioneering MPPT control scheme employing a stochastic variance reduction gradient system. The novelty of this approach lies in its fusion with the Glow Swarm Optimization (GSO) and the Adaptive Neuro Fuzzy Inference System (ANFIS), resulting in a robust hybrid controller. In the pursuit of optimizing the PEMFC system, the proposed GSO-ANFIS controller is subjected to rigorous testing under dynamic variations in both PEMFC temperature and load. Notably, PEMFCs, due to fluctuations in pressure and temperature, exhibit stochastic behaviour, forming a Gaussian surface. In this research, the popular Perturb and Observe (P&O) and Incremental Conductance methods are evaluated alongside the newly introduced GSO-ANFIS model. The proposed GSO-ANFIS controller outperforms its counterparts, showcasing an impressive accuracy level of 89.97%. In contrast, the Artificial Neural Network (ANN) achieves 80.33% accuracy, and the standalone ANFIS controller attains 86.5% accuracy. This disparity underscores the efficacy and potential of the novel hybrid approach, which not only adeptly handles the stochastic nature of PEMFCs but also significantly enhances accuracy in power optimization. This research not only contributes a valuable addition to the field of MPPT control but also offers a promising trajectory for the future development of efficient and reliable PEMFC systems.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85181041959&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.ecmx.2023.100505
    http://hdl.handle.net/10576/62157
    المجموعات
    • الهندسة الكهربائية [‎2848‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video