• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deep reinforcement learning as multiobjective optimization benchmarks: Problem formulation and performance assessment

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S221065022400230X-main.pdf (1.852Mb)
    Date
    2024
    Author
    Ajani, Oladayo S.
    Ivan, Dzeuban Fenyom
    Darlan, Daison
    Suganthan, P.N.
    Gao, Kaizhou
    Mallipeddi, Rammohan
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The successful deployment of Deep learning in several challenging tasks has been translated into complex control problems from different domains through Deep Reinforcement Learning (DRL). Although DRL has been extensively formulated and solved as single-objective problems, nearly all real-world RL problems often feature two or more conflicting objectives, where the goal is to obtain a high-quality and diverse set of optimal policies for different objective preferences. Consequently, the development of Multi-Objective Deep Reinforcement Learning (MODRL) algorithms has gained a lot of traction in the literature. Generally, Evolutionary Algorithms (EAs) have been demonstrated to be scalable alternatives to the classical DRL paradigms when formulated as an optimization problem. Hence it is reasonable to employ Multi-objective Evolutionary Algorithms (MOEAs) to handle MODRL tasks. However, there are several factors constraining the progress of research along this line: first, there is a lack of a general problem formulation of MODRL tasks from an optimization perspective; second, there exist several challenges in performing benchmark assessments of MOEAs for MODRL problems. To overcome these limitations: (i) we present a formulation of MODRL tasks as general multi-objective optimization problems and analyze their complex characteristics from an optimization perspective; (ii) we present an end-to-end framework, termed DRLXBench, to generate MODRL benchmark test problems for seamless running of MOEAs (iii) we propose a test suite comprising of 12 MODRL problems with different characteristics such as many-objectives, degenerated Pareto fronts, concave and convex optimization problems, etc. (iv) Finally, we present and discuss baseline results on the proposed test problems using seven representative MOEAs. 2024 Elsevier B.V.
    DOI/handle
    http://dx.doi.org/10.1016/j.swevo.2024.101692
    http://hdl.handle.net/10576/62216
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video